Problem of Crashing Of A Project

A project has activities with the following normal and crash times and cost:

Problem 1
A project has activities with the following normal and crash times and cost:


Determine a crashing scheme for the above project so that the total project time is reduced by 3 weeks.

Solution
We have the following network diagram for the given project with normal costs:


Therefore Path II is the critical path and the critical activities are A, C, E, G and H. The non-critical activities are B, D and F.

Given that the normal time of activity A is 4 weeks while its crash time is 3 weeks. Hence the time of this activity can be reduced by one week if the management is prepared to spend an additional amount. However, the time cannot be reduced by more than one week even if the management may be prepared to spend more money. The normal cost of this activity is Rs. 8,000 whereas the crash cost is Rs. 9,000. From this, we see that crashing of activity A by one week will cost the management an extra amount of Rs. 1,000. In a similar fashion, we can work out the crash cost per unit time for the other activities also. The results are provided in the following table.


A non-critical activity can be delayed without delaying the execution of the whole project. But, if a critical activity is delayed, it will delay the whole project. Because of this reason, we have to select a critical activity for crashing. Here we have to choose one of the activities A, C, E, G and H The crash cost per unit time works out as follows:

Rs. 1,000 for A; Rs. 1,000 for C; Rs. 1,000 for E; Rs. 6,000 for G; Rs. 3,000 for H.

The maximum among them is Rs. 1,000. So we have to choose an activity with Rs.1,000 as the crash cost per unit time. However, there is a tie among A, C and E. The tie can be resolved arbitrarily. Let us select A for crashing. We reduce the time of A by one week by spending an extra amount of Rs. 1,000.

After this step, we have the following network with the revised times for the activities:


The revised time for Path I = 3 + 5 + 6 + 5 = 19 weeks.
The time for Path II = 3 + 4 + 6 + 7 + 4 = 24 weeks.
Maximum of <19, 24>= 24.

Therefore Path II is the critical path and the critical activities are A, C, E, G and H. However, the time for A cannot be reduced further. Therefore, we have to consider C, E, G and H for crashing. Among them, C and E have the least crash cost per unit time. The tie between C and E can be resolved arbitrarily. Suppose we reduce the time of C by one week with an extra cost of Rs. 1,000.

After this step, we have the following network with the revised times for the activities:


The time for Path I = 3 + 5 + 6 + 5 = 19 weeks.
The time for Path II = 3 + 3 + 6 + 7 + 4 = 23 weeks.
Maximum of <19, 23>= 23.

Therefore Path II is the critical path and the critical activities are A, C, E, G and H. Now the time for A or C cannot be reduced further. Therefore, we have to consider E, G and H for crashing. Among them, E has the least crash cost per unit time. Hence we reduce the time of E by one week with an extra cost of Rs. 1,000.

By the given condition, we have to reduce the project time by 3 weeks. Since this has been accomplished, we stop with this step.